Use of Medium Density Affymetrix Axiom array for introduction of genomic selection in an Atlantic salmon breeding programme

ISGA Santiago da Compostella 22June 2015

Alastair Hamilton
Landcatch Natural Selection Ltd
Development of a High-Density Salmon SNP chip

UK TSB funded project
GWAS using Affymetrix Axiom array < 132k SNPs

33K Medium density Axiom array
Sea Lice Resistance

Genetic Variation in Sea Lice count EBV
- by family in YC2005 and 2007

- YC2005
- YC2007

Number of families

Sea Lice count breeding value

Resistant
Susceptible
Highly Susceptible
2014 candidate broodstock selections

3 discovery populations

2000 sibs sea lice challenged at 100g
$H^2 0.31$

Subset of 1152 selected for MD 33k array genotyping

Alternative year class challenged at 100g
$H^2 0.24$

Subset of broodstock scored during natural Amoebic Gill Disease challenge
$H^2 0.17$
Gross AGD Score (from Taylor et al., 2009)

Photos: Hamish Rodger
Vet-Aqua International February 2013
Timescale

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Class</td>
<td>2007</td>
<td>2008</td>
<td>2009</td>
<td>2010</td>
<td>2012</td>
<td>2013</td>
</tr>
</tbody>
</table>

Selection

- **Family selection, sea lice count**
- **Growth and Survivability under AGD Challenge**
- **Gill Score**
- **Sea lice QTL MAS**
- **Genomic Selection**
Sea Lice

GEBV’s calculated via GBLUP using SVS within Golden Helix software package.

Input trait was sea lice count per unit skin surface area

Within population accuracy 0.55 - 0.76

Between populations 0.18 - 0.47

Predicted phenotypic improvement using GS 22%
AGD

Accuracy of input trait as polygenic EBV’s
0.67

Predicted phenotypic improvement using GS
11%
Advantages

Robust:
99% of samples exceeded call rate of 98%
Very forgiving of DNA quality and concentration

Accurate
Consistency of SNP calls between repeats and positive controls
Prediction accuracies surpassed expectations
Disadvantages

Inflexibility of marker density: inflexibility of cost

>2 week processing time

6 week manufacture lead time

Multiple equivalent chips worldwide, datasets less comparable