A quantitative genetic study of carcass quality traits in Atlantic salmon recorded both at a fixed age and fixed body weight.

Ólafur Hjörtur Kristjánsson

Supervised by:
Bjarne Gjerde Nofima, Ås/Prof II IHA-NMBU.
Marie Lillehammer, Nofima Ås.
Jónas Jónasson, Stofnfiskur.
Important breeding objective traits

– Growth
 • Reduce number of days to target weight.

– Fat
 • Keep stable or reduce.

– Pigment
 • Increase colour level in the fillet.
Genetic and phenotypic correlations recorded at same age

<table>
<thead>
<tr>
<th></th>
<th>Fat</th>
<th>Colour</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td></td>
<td>0.03</td>
<td>0.48 to 0.63</td>
</tr>
<tr>
<td>Colour</td>
<td>-0.39</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Weight</td>
<td>0.42 to 0.82</td>
<td>-0.21 to 0.31</td>
<td></td>
</tr>
</tbody>
</table>
Objective

• Obtain estimates of genetic parameters for growth, filet fat and filet colour when measured both at:

 • **Same age**(SA)
 • **Same weight**(SW)
Material

• Two year classes.

• 206 families, offspring of 206 females and 103 males
 • 10-15 individuals per family in SA group
 • 13-15 individuals per family in SW group.
Methods

• SA group
 – Growth, fat and colour measured at average weight of 4.7 kg, in total 2437 measures.

• SW group
 – Growth measured at the start.
 – Growth measured on individuals around and above the target weight 4.4 kg ~ monthly.
 – Fat and colour measured at slaughter.
 – 7561 growth measures, 2693 fat and colour measures.
A quantitative genetic study of carcass quality traits in Atlantic salmon

Norwegian University of Life Sciences
Multivariate censored animal model in DMU

• Censoring data.
 – Start growth ~ when average weight was 2.7 kg.
 – Growth on individuals who reach threshold 4.4 kg.
 • Imputes growth values for remaining fish in tank using Gibbs sampler.
 • Total 13102 growth values used.

• The animal model for the 6 traits, growth, fat and colour SA and SW.
 • \(y = X\beta + Zu + Mr + e \)
 – Fixed effects: sex, year class, slaughter date

• Estimated using MCMC with 2,400,000 rounds.
Results
A quantitative genetic study of carcass quality traits in Atlantic salmon

Norwegian University of Life Sciences
Phenotypic correlations

Year class 1

Fat % SW fish vs Growth

Fat % SA fish vs Growth

Year class 2

Fat % SW fish vs Growth

Fat % SA fish vs Growth

A quantitative genetic study of carcass quality traits in Atlantic salmon

Norwegian University of Life Sciences
<table>
<thead>
<tr>
<th>Trait</th>
<th>h^2 SA (±SE)</th>
<th>h^2 SW (±SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>$0.25±0.08$</td>
<td>$0.17±0.04$</td>
</tr>
<tr>
<td>Colour</td>
<td>$0.10±0.04$</td>
<td>$0.10±0.004$</td>
</tr>
<tr>
<td>Growth</td>
<td>$0.36±0.09$</td>
<td>$0.38±0.10$</td>
</tr>
</tbody>
</table>
Genetic correlations between the same trait in SA and SW

<table>
<thead>
<tr>
<th>Trait</th>
<th>Genetic correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>0.59±0.08</td>
</tr>
<tr>
<td>Colour</td>
<td>0.44±0.26</td>
</tr>
<tr>
<td>Growth</td>
<td>0.92±0.04</td>
</tr>
</tbody>
</table>
Genetic correlations between traits within SA and SW

<table>
<thead>
<tr>
<th></th>
<th>SA</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat and colour</td>
<td>-0.34±0.25</td>
<td>-0.26±0.26</td>
</tr>
<tr>
<td>Fat and growth</td>
<td>0.63±0.13</td>
<td>-0.21±0.23</td>
</tr>
<tr>
<td>Growth and colour</td>
<td>-0.36±0.24</td>
<td>0.25±0.32</td>
</tr>
</tbody>
</table>
Conclusions

- Magnitude of genetic correlations of growth with fat and colour depend on when the traits are measured.
- When measured at same weight instead of at same age genetic correlations change from being unfavourable to favourable.
- Possible to improve growth while at the same time reduce fat and increase colour as increased growth is utilized to perform earlier slaughter.
Thank you!

Norwegian University of Life Sciences

SF ICELAND
STOFNFISKUR

Nofima