Asian Seabass Genome Project: A status report

László Orbán, on behalf of the
The Asian Seabass Genome Consortium

Temasek Life Sciences Laboratory, Singapore; Dobzhansky Center, St. Petersburg, Russia; Pacific Biosystems, USA; SANBI, Capetown, South Africa; Max Planck Institute for Mol. Gen., Berlin, Germany; Chinese University of HK, Hong Kong; Centre for Comparative Genomics, Murdoch University, Australia; IGIB, New Delhi, India; Georgikon Faculty, University of Pannonnia, Keszthely, Hungary;
More people, less fish

Population 7 billion

Depleted oceans

Source: National Geographic
endoftheline.com
Outline

• Introducing the Asian seabass and the selection program;

• Status report on the Genome (and Transcriptome) Project;

• Early applications: phylogeography and sex change;

• Summary.
Asian seabass
(*Lates calcarifer*)

- Barramundi (AUS);
- Euryhaline, catadromous predator;
- Protandrous (male-first) hermaphrodite;
- Distributed over a wide geographical area;
- Cultured mostly by smaller farms, a few selection programs;
Asian seabass
(*Lates calcarifer*)

- Barramundi (AUS);
- Euryhaline, catadromous predator;
- Protandrous (male-first) hermaphrodite;
- Distributed over a wide geographical area;
- Cultured mostly by smaller farms, few selection programs;
- TLL-AVA collaboration: Selection program in its 9th year – first mature F2s are ready for crosses;
- Increased growth rate.
Asian seabass selection program (timeline)

- 2004-2011: marker-assisted selection program with the Yue group
- Increased growth rate – F2 grows >20% faster than unselected;
- 2011: received S$10M grant from NRF for 5 yrs;
- Genomic selection – polygenic traits;
- Nutrigenomics and disease resistance;
- Start parallel program for salt tolerant tilapia.
Outline

• Introducing the Asian seabass and the selection program;

• **Status report on the Genome (and Transcriptome) Project**;

• Early applications: phylogeography and sex change;

• Summary.
Asian seabass genome – what was known

Genome size: 700 Mb
2n = 48
Genetic linkage map (high density)
Physical map
Expected gene count: 26,000-27,000
Repeat inventory

Visit Poster 88
on the
Sequencing and assembly of a
10 Mb region of the Asian
seabass genome containing
growth-associated QTLs

Asian seabass
Genome Assembly Plan

- **Illumina HiSeq 2500**
 - 2X100 nt PE
 - 80X Coverage

- **PacBio SMRT**
 - 80 Smart Cells
 - 30X Coverage

- **BAC end sequencing**
 - 1X Coverage

- **Repeat Inventory**
- **Transcriptome**
- **QTL on LG2**
- **Mate-pair libraries (?)**
- **Pooled BAC sequencing**
- **Gap filling (?)**

Improved High Quality Draft Genome

Shubha Vij & team
Lok Lab, CUHK, Hong Kong
Sivasubbu Lab, IGIB, New Delhi, India
Asian seabass - Genome Sequence Datasets

Illumina HiSeq
- 2X100 nt PE
- 500&750 bp
- 80X coverage

PacBio SMRT
- ~4 kb avg read length
- ~10 Kb library
- 30X coverage

PacBio SMRT
- ~8 kb avg read length
- ~20 Kb library
- 60X coverage

Sanger seq
- Two BAC libraries
- ~120 kb insert
- 11.5K seq
- 1X coverage

A partially inbred Asian seabass individual
Genome assembly - the first try

PacBio RS
Long reads

90X de novo assembly

contigs 3,807
N50 1.2 Mb
Maximum 18.9 Mb

Siddarth Singh, Pacific Biosystems
Mike Schatz, CSH Labs
Final genome assembly

PacBio RS
Long reads

- **90X** de novo assembly
- # contigs: 3,807
- N50: 1.2 Mb
- Maximum: 18.9 Mb

Illumina HiSeq
Short reads

- **80X** denovo assembly
- # contigs: 11,969,803
- N50: 1,001 bp
- Maximum: 26,868 bp

Siddarth Singh, Pacific Biosystems
Mike Schatz, CSH Labs

Lok Lab, CUHK, Hong Kong
Sivasubbu Lab, IGIB, New Delhi, India
Current status and improvement efforts

- Validation by 80X Illumina-reads mapping
 - 96% of reads mapped as proper pairs

- Gene annotation underway

- Generated optical map data - *de novo* assembled and used to place PacBio genome contigs
 - 79.8% similarity between the optical map and sequence assembly

<table>
<thead>
<tr>
<th></th>
<th>PacBio</th>
<th>Optical Map</th>
</tr>
</thead>
<tbody>
<tr>
<td># contigs</td>
<td>3,807</td>
<td>3,333</td>
</tr>
<tr>
<td>Contig N50</td>
<td>1.2 Mb</td>
<td>6.2 Mb</td>
</tr>
<tr>
<td>Maximum</td>
<td>18.9 Mb</td>
<td>20.6 Mb</td>
</tr>
</tbody>
</table>

- Alternative Falcon assembly underway
Transcriptome sequencing and assembly

- >1 billion reads from various organs of multiple individuals and 3 NGS platforms were assembled in a step-wise manner

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length (bp)</td>
<td>262,023,963</td>
</tr>
<tr>
<td>Number of contigs</td>
<td>267,616</td>
</tr>
<tr>
<td>Number of contigs ≥1 kb</td>
<td>70,588</td>
</tr>
<tr>
<td>Max length (bp)</td>
<td>31,251</td>
</tr>
<tr>
<td>Average length (bp)</td>
<td>979</td>
</tr>
</tbody>
</table>

- >80% of the expected protein-coding loci obtained, 58% of these represented by a predicted FL-cDNA sequence

Outline

- Introducing the Asian seabass and the selection program;
- Status report on the Genome (and Transcriptome) Project;
- Early applications: phylogeography and sex change;
- Summary.
Potential benefits of sequenced genomes

- Info on coding regions;
- Info on regulatory regions & pathways;
- Comparative/evolutionary genomics;
- New platforms (chips, RNAseq, GBS, methylome, etc.);
- Re-sequencing of variants;
- Rapid identification of mutations.
Molecular evidence points to the existence of two Asian seabass species

Ward et al., J. Fish Biol. (2008); Pethiyagoda & Gill, Zootaxa (2012)
Vij et al., Frontiers Marine Science (2014)
Resequencing 65 genomes reveals clear signs of admixture in the SEA region

<table>
<thead>
<tr>
<th>Indian region</th>
<th>S-E Asia/PH</th>
<th>AU/PG</th>
</tr>
</thead>
<tbody>
<tr>
<td>India-Eastern Coast</td>
<td>KH</td>
<td>AU</td>
</tr>
<tr>
<td>India-Western Coast</td>
<td>TH-EC</td>
<td>PG</td>
</tr>
<tr>
<td>VN</td>
<td>SG</td>
<td>ID</td>
</tr>
<tr>
<td>PH</td>
<td>ID-SJ</td>
<td>ID-SU</td>
</tr>
<tr>
<td>ID-K</td>
<td>AU-D</td>
<td>ID</td>
</tr>
<tr>
<td>VN</td>
<td>SG</td>
<td>ID</td>
</tr>
<tr>
<td>PH</td>
<td>ID-SJ</td>
<td>ID-SU</td>
</tr>
<tr>
<td>ID-K</td>
<td>AU-D</td>
<td>ID</td>
</tr>
<tr>
<td>VN</td>
<td>SG</td>
<td>ID</td>
</tr>
<tr>
<td>PH</td>
<td>ID-SJ</td>
<td>ID-SU</td>
</tr>
<tr>
<td>ID-K</td>
<td>AU-D</td>
<td>ID</td>
</tr>
<tr>
<td>VN</td>
<td>SG</td>
<td>ID</td>
</tr>
<tr>
<td>PH</td>
<td>ID-SJ</td>
<td>ID-SU</td>
</tr>
<tr>
<td>ID-K</td>
<td>AU-D</td>
<td>ID</td>
</tr>
<tr>
<td>VN</td>
<td>SG</td>
<td>ID</td>
</tr>
<tr>
<td>PH</td>
<td>ID-SJ</td>
<td>ID-SU</td>
</tr>
<tr>
<td>ID-K</td>
<td>AU-D</td>
<td>ID</td>
</tr>
<tr>
<td>VN</td>
<td>SG</td>
<td>ID</td>
</tr>
<tr>
<td>PH</td>
<td>ID-SJ</td>
<td>ID-SU</td>
</tr>
<tr>
<td>ID-K</td>
<td>AU-D</td>
<td>ID</td>
</tr>
<tr>
<td>VN</td>
<td>SG</td>
<td>ID</td>
</tr>
<tr>
<td>PH</td>
<td>ID-SJ</td>
<td>ID-SU</td>
</tr>
<tr>
<td>ID-K</td>
<td>AU-D</td>
<td>ID</td>
</tr>
<tr>
<td>VN</td>
<td>SG</td>
<td>ID</td>
</tr>
<tr>
<td>PH</td>
<td>ID-SJ</td>
<td>ID-SU</td>
</tr>
<tr>
<td>ID-K</td>
<td>AU-D</td>
<td>ID</td>
</tr>
</tbody>
</table>

Andrey Yurchenko, St. Petersburg, Russia; unpubl.
Asian seabass (*Lates calcarifer*)

- Problem: Protandrous (male-first) hermaphrodite;
- Zebrafish can be used as a model to understand sex change.

Natural sex reversal in Asian seabass

Unusual individuals: ‘reluctant’ males and primary females

Array-based transcriptomics: The transforming gonad returns to a near-undifferentiated stage before initiating feminization

Summary – Asian seabass Genome

- Genome is sequenced (170X);
- Assembly is based on PacBio data, Illumina validates;
- Optical mapping showed improvements;
- International consortium for annotation;
- Multiple benefits;
- (Seq and assembly of Mozambique tilapia genome is in progress.)
Genome of the Mozambique tilapia

C-value (pg): 0.81-1.0 (Animal Genome Size Database)
Diploid Chrom number (n): 44
Genome Size: ca. 1 Gb

- Different approach from the ASB
 - 6 Short-insert PE (SIPE) – 60X
 - 3 Long-insert MP (1, 2, 3 kb) – 30X
 - Lucigen Long-insert MP (8kb) – 3X
 - Lucigen Fosmid MP (40kb) – 3X
 - Pacbio sequence data pending

- De novo assembly is underway
 - V1: SIPE-only assembly by MaSuRCA

<table>
<thead>
<tr>
<th>Assembly size</th>
<th>964 Mb</th>
</tr>
</thead>
<tbody>
<tr>
<td># of contigs</td>
<td>173,146</td>
</tr>
<tr>
<td>Max length</td>
<td>257.3 kb</td>
</tr>
<tr>
<td>N50 length</td>
<td>15.3 kb</td>
</tr>
</tbody>
</table>

Liew Woei Chang, Shen Xueyan & team
RGG:
Shubha Vij
Inna Kuznetcova
Woei Chang Liew
Xueyan Shen
Natascha May
Prakki Sri Datta
Jolly M. Saju
Purushothaman K.
Shawn Ngoh
Pranjali Bhandare

Farm teams
Genhua Yue & team
Huan Sein Lim & team

TLL Facilities

RGG Alumni:
Preethi Ravi
Rajini Sreenivasan
Laura Casas
Alex Chang
Mohd. Sorowar
Hossain
Xingang Wang
Richard Bartfai
Keh-Weei Tzung
Hsiao Yuen Kwan
Doreen Lau
Junhui Jiang

Collaborators:
Alan Christoffels (Capetown)
Si Lok (HK)
Matt Bellgard (Murdoch)
Mike Shatz (CSH)
PacBio
Aleks Komissarov & Andrey Yurchenko (St. Petersburg)
Heiner Kuhl (Berlin)
Dean Jerry (Queensland)
...

Funding:
National Research Foundation
AVA
EDB
MND
TEMASEK LIFESCIENCES LABORATORY
An outlook for the future

Past: MAS on seabass

Present: Genomic selection on A. seabass & tilapia

Near future: Integrated systems applied to several fish species

Photo: http://faithoncampus.com/